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A quantized geometrical description of hadron extension is developed based on 
Drechsler's soldered de Sitter fiber bundle, which possesses as fiber a local 
four-dimensional Riemannian space of constant curvature characterized by a 
radius of curvature R of the order of 1 Fermi. The structural (gauge) group of 
the bundle is a de Sitter SO(4, 1), which contains all observable transformations 
(rotations as well as translations). The quantized de Sitter-structured connection 
of the bundle leads to a set of self-interaction gauge operators that "act back" 
on the de Sitter bundle by inducing a local curvature, which, in turn, affects a 
small neighborhood of the adjoining space-time position, leading to the experi- 
mentally observed "size" of the hadron. A particular choice for the quantized 
Lorentz cross section (gauge) is made that leads to the mathematically consistent 
and experimentally verifiable hadron model, the quantum relativistic rotator. 
Also investigated is the limit corresponding to taking the radius of curvature of 
the de Sitter fiber to infinity. 

1. I N T R O D U C T I O N  

Much  a t ten t ion  has been  directed toward ob ta in ing  a clear unders tand-  
ing of the in ternal  structure of hadrons  through the use of q u a n t u m  field- 
theoretic methods,  all of  which employ the dynamics  of certain more 
fundamen ta l  subuni ts ,  which are taken to const i tute the exper imental ly  
observed hadron ic  b o u n d  states (Ge l l -Mann ,  1962; Chodos  et al., 1974; 

Salam and  Strathdee, 1977, 1978; Marc iano  and  Pagets, 1978). The basic  
shor tcomings of these par t icular  approaches  is that  they do not  determine 
in terms of the assumed under ly ing  dynamics  precisely what  field structures 
are responsible  for the observed nonloca l i ty  of hadrons  and  they fail to 
explain adequate ly  the apparen t  conf inement  mechanism.  In  short, the 
methods  of  q u a n t u m  chromodynamics  have not  sufficiently de te rmined  the 
complete  low-energy structure of the theory. 
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528 Aldinger 

In this paper the problems concerning the internal structure of hadrons 
are addressed from a completely different point of view. In particular, the 
experimentally observed nonlocal character of hadrons is accounted for by 
borrowing from general relativity the fundamental concept that it is the 
distribution of  matter itself that determines the geometry of the underlying 
space-time structure. I therefore assume that in the same way that the 
long-range gravitational interactions lead to a cosmological curvature, the 
short-range strong interactions may also lead to a "local curling," but on 
a much smaller microscopic scale. 

The basic idea is to endow ordinary space-time with a richer structure 
than that implied by relativity by attaching to each position x an internal 
space characterized by an elementary length parameter of the order of 
1 Fermi, thereby allowing for additional internal degrees of freedom. As a 
consequence of the presence of a microscopic distribution of matter at some 
position x, these additional degrees of freedom induce locally a nonzero 
curvature of  the (hadron's) internal space, which leads to a microscopic 
"curling" of the immediate neighborhood of the adjoining physical space- 
time position. The actual manifestation of the local nonzero curvature of 
the internal space is attributed to the presence of a set of strong (self- 
interaction) compensating fields, which provides a non-Abelian gauge-type 
description of hadron extension, thereby avoiding the difficulties associated 
with the determination of the dynamics of more elementary constituents, 
which may be " t rapped"  within the matter distribution. 

The mathematical structure on which a gauge description of hadron 
extension is formulated is a fiber bundle E(B, F, G, P) constructed over 
base manifold B, possessing fiber F, and associated with the principal fiber 
bundle P = P(B, G) (Kobayashi and Nomizu, 1963). The structural (gauge) 
group G of  the fiber plays the role of a dynamical group 2 (Barut and Bohm, 
1965), which determines the internal motion of the hadron (degrees of 
freedom belonging to the fibers). 

The fiber bundle formalism of hadron extension presented here is 
well-suited for the inclusion of gravity simply by choosing as base manifold 
an appropriately curved Riemannian space-time V4. However, in order to 
concentrate specifically on how the short-range strong-interaction gauge 
fields affect the underlying base manifold, I assume that any long-range 
gravitational perturbations are locally negligible and therefore choose as 
base manifold fiat Minkowski space-time, B = M4. 

In order to allow for hadronic internal degrees of freedom, an elemen- 
tary length parameter, related to the range of the self-interaction gauge 
fields, is built directly into the mathematical structure by choosing as fiber 

ZBy dynamical group I mean a symmetry group for a quantum mechanical system possessing 
a mass-spin spectrum. 
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a four-dimensional pseudo-Riemannian space V~ of  constant curvature with 
intrinsic radius R = 1 Fermi. Since the measurement of distance can be 
made only in Minkowski space, the intrinsic radius of  the internal space 
V~ does not have any particular physical relevance. Therefore, in order to 
transfer a physical meaning to the intrinsic curvature of V~ I choose a fiber 
bundle with Cartan connection (Drechsler and Mayer, 1977), which is 
characterized by the following: (1) the structural group G of  the fiber 
bundlle E(B, F, G, P) associated with P = P(B, G) acts transitively on F, 
i.e., F is the homogeneous space G~ G', where G'  is the stability subgroup 
(residual gauge group) of G leaving the point ~ F fixed; 3 (2) dim F =  
dim B -- n; and (3) the tangent spaces T~(B) and T~(V'4(x)) are isomorphic 
to one another, implying that the local fiber Fx over x ~ B is "soldered" to 
B in such a way that Fx is tangent to B at x -= ~ for any x ~ B. For the fiber 
bundle chosen here (in the absence of gravitational perturbations) the 
"soldering" is obtained by identifying a Minkowski subspace of the fiber 
bundle with the local tangent space of  M4, which thereby transfers the 
physical meaning of distance directly to the fiber so that R may be measured 
in centimeters. 

In order to translate the purely mathematical formalism of  a "soldered" 
fiber bundle constructed over space-time into a physically acceptable theory, 
it is necessary to decide on what to use for the structural (gauge) group G. 
Motivated by the facts that (1) the inclusion of translations into the structural 
group should lead to a de Sitter-structured fiber bundle (Smrz, 1983), (2) 
the pseudo-Riemannian noncompact coset space V'4=S0(4, 1)/S0(3, 1) 
contains the stability subgroup S0(3, 1), which, via the soldering mechan- 
ism, may be identified with the physical Lorentz subgroup of the Poincar6 
group (thereby supplying an important connection between the external 
space-time transformations and the internal motions), and (3) a de Sitter 
S0(4, 1) plays the central role in the development of the model of the 
quantum relativistic rotator (QRR) (Aldinger et al., 1983; Bohm et al., 1983) 
in that the second-order Casimir operator of  an S0(4, 1) leads to an 
experimentally verifiable rotator-like mass-spin spectrum (Aldinger et al., 
1984), one is led to choose for the structural group G a de Sitter S0(4, 1). 
Therefore the physically relevant bundle used for a geometrical (gauge) 
description of hadron extension is a de Sitter fiber bundle with Cartan 
connection, 

TR( M4) .~- E( M4, S0(4, 1)/ S0(3, 1), S0(4, 1), P) 

where P = P(M4, S0(4, 1 ) ) ,  hereafter referred to as Drechsler's de Sitter 
fiber bundle (Drechsler, 1975, 1977a, b). 

3~ is the origin of the homogeneous coset space G/G' and is the point of contact between 
base space and fiber. 
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The connection between a hadronic matter distribution and the underly- 
ing fiber bundle geometry is provided for by coupling, in the usual way, 
the curvature of the bundle space to the hadronic current, which itself is 
derived from the matter fields, 0(x, ~), where x determines the external 
space-time position only and r labels positions along the fibers. However, 
in this paper I am primarily concerned with the group-theoretic aspects 
associated with a gauge-type description for the extension of isolated (non- 
interacting) hadrons and will not invesigate hadronic matter fields and how 
they relate to the quantities defining the geometry in the underlying bundle 
space. 4 

2. SO(4, 1) CONNECTION AND CURVATURE 

In this section I give a brief review of  Drechsler's de Sitter fiber bundle 
and analyze the decomposition of the S0(4, 1) connection and correspond- 
ing curvature expressions. 5 The physically important concept of"solder ing"  
and the interpretation of  the gauge translations will be discussed in the 
following section. 

The mathematical structure leading to a geometrical description of 
hadron extension is provided for by Drechsler's de Sitter fiber bundle 

TR(M4) -~ E(M4, S0(4, 1)/S0(3, 1), S0(4, 1), P) 

where the principal bundle P =  P(M4, S0(4, 1)). The standard fiber of 
TR(M4) is a four-dimensional pseudo-Riemannian space V~ which is 
isomorphic to the homogeneous noncompact coset space SO (4, 1 ) /SO (3, 1) 
(i.e., a de Sitter space). The structural group of  TR(M4) is a de Sitter 
S0(4, 1) [which acts as the dynamical group of  motion along the fibers of  
TR(M4)], which possesses an S0(3, 1) as the (noncompact) stability sub- 
group. 

The de Sitter space V~ on which S0(4, 1) acts as the symmetry group 
of motion may be embedded into a five-dimensional pseudo-Euclidean space 
and is specified by a four-dimensional hypersurface which is noncompact 
in time and compact in the space directions. In terms of coordinates of the 
pseudo-Euclidean space, the hypersurface may be expressed as 

~A~A:~A~B'I~AB:--R2 , A,B=i,j, 4; i,j=0,1,2,3 (1) 

where the de Sitter metric TAB = diag(1, -1 ,  -1 ,  -1 ,  -1 )  and R is a fixed 
length parameter characterizing the radius of  the space. 

4For a discussion of how spinor-valued matter fields act as a source for the geometric curvature 
fields of the bundle space, see Drechsler (1975). 

SFor further details see Drechsler and Mayer (1977). 
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The de Sitter group is the group of transformations that leaves the 
quadratic form of equation (1) invariant, i.e., it is the group of motion in 
V~. A basis for the Lie algebra of G = S 0 ( 4 ,  1) is given by 

JAB = --JBA (2) 

which obey the commutation relations 

[JAB, JCD] = --i('ITACJBD + ~BDJAc -- ~ADJBc -- ~BCJAD) (3) 

In order to exhibit the subgroup structure of S 0 ( 4 ,  1) I now define 

1 
~', ---~ J4,, i = 0 ,  1,2,3 (4) 

where J4~ generate de Sitter rotations in the 4 - i  plane (pseudorotations 
for i = 0) and 7r~ are the corresponding generators of translation along the 
de Sitter fibers (the de Sitter boosts). Therefore the commutation relations 
of equation (3) take on the form [~7~ = d i a g ( 1 , - 1 , - 1 , - 1 ) ]  

[ Jo, Jk,] = --i( Tq,kJjt + ~Tjfl~k -- ~7~Jjk - ~jkJ~,) (5a) 

[ ~ ,  Jjk ] = -- i ( ~7~k rrj - rlo'rrk ) (5b) 

1 " 
Ecr,, 7rj] = t R2 Jo (5c) 

These relations display the SO(3, 1)jlj stability subalgebra (spanned by the 
Jij that generate rotations around the C a axis leaving the point ~ fixed 6) 
together with the vector subspace spanned by the 7r; (the de Sitter boosts). 
I am using the convention that indices A, B, C, D , . . .  (running over 0, 1, 
2, 3, 4) and indices i ,j ,  k, l , . . .  (running over 0, 1, 2, 3) belong to the internal 
space (the de Sitter fibers), whereas indices/~, u, p, o-,...  (running over 0, 
1, 2, 3) belong to the external base space. 

The de Sitter-structured connection in P ( M 4 ,  $ 0 ( 4 ,  1)) is a matrix- 
value four-vector field on Minkowski space with matrices defining a rep- 
resentation of the Lie algebra of S 0 ( 4 ,  1) and has the form 

F R ( x )  1 AB =~Ftz (X)JAB (6) 

where FR(x) i R i = h,(x)F~ (x), with h ~ ( x )  the space-time tetrad fields. The 
ten generators JAB carry the dependence on the group coordinates and 
satisfy equation (3), while the strong interaction gauge potentials FAB(X) 
depend only on the Minkowski coordinates and represent the 40 coefficients 
of an S 0 ( 4 ,  1) connection that determines the nature of the local frames 
o n  TR(M4) in going from a point x ~ M4 to an infinitesimally close point, 
i.e., they describe the observable change in the frame. 

6~A is given by ~A = (0, 0, 0, 0, - R )  and denotes the coordinates of the contact point between 
base space and fiber. 



532 A l d i n g e r  

The horizontal lift of a tangent vector O~ at x ~ M4 to an arbitrary point 
p c P(M4, S0(4, 1)) is 

D~ =o.+ir~(x)  (7) 

and the curvature of the de Sitter connection is obtained by taking the 
commutator of two horizontal vector fields: 

= ,~, ,~(x) (8) [D~, Dr] . R 

where 

~ ~(x)  --- 0 . r~(x)  - 0.r~(x) + i[r  ~(x), r~(x)] (9) 

The Lie algebra ~ of G may be decomposed according to 

~=&e| (lO) 

where ~ is the Lie algebra of the stability subgroup S0(3, 1)j,~ and 3- is a 
four-dimensional vector subspace of ~ spanning the tangent space to V~ 
at ~. According to this decomposition, the S0(4, 1) connection may be 
expressed in the following way: 

r."(x) = rL(x) + r ; ( x )  (11) 
1 ij 4 i  = ~ r . ( x ) &  + r .  ( x ) &  (12) 

where the de Sitter (R-valued) connection has been decomposed into 
S0(3, 1)j,j (/-valued) and de Sitter boost (t-valued) components. 

Using the decomposition of equation (11), one finds for the horizontal 
lift 

D .  = 0. + iF2 + iF ;  (13) 

sake of brevity I have suppressed the x dependence). (where for the 
Therefore 

where 

= ---- I S ~ , ,  [D~,D,,] �9 R �9 , �9 t (14) 

(•/g,v ~ l �9 t R~,,+ z[F~, F~,] (15a) 

R ~ , ,  1 l �9 l l --- 0~Fv-0~F~ + t[F~, F~] (15b) 
t t �9 1 t ' + , [r~,  r'A (15c) S.,.-O~F,,-O,.F,.+t[F.,F,.] " t 

The /-valued component of the de Sitter curvature is given by equation 
(15a), where R ~  is the S0(3, 1)-structured curvature and the second term 
is the contribution to Q~. originating from the translational components 
F~, whereas S;~ is the translational (t-valued) component of the de Sitter 
curvature and corresponds to torsion. 
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Notice that a dimensional coupling constant was not explicitly written 
in front of the FR(x) terms on the right-hand side of equations (7) and 
(11)�9 Such a strong-interaction coupling is assumed to be absorbed in the 

R F~(x), which therefore carry the dimension of inverse length. One could 
�9 ^ R  always replace the F~(x) with gF~(x), where g is a constant with the 

dimension of inverse length and FR(x) is the dimensionless analogue of 
the de Sitter connection. Then a factor of g will appear on the right-hand 
side of equation (14) as well as in front of the commutation relations (15), 
leading to the interpretation of these relations as the gauge field "self- 
interactions" (Wheeler, 1962). 

Choosing a gauge [cross section in P(M4, SO(4, 1))] leads to gauge- 
fixing relations (constraints on the gauge potentials), which are used to 
eliminate any unphysical degrees of freedom in the formalism. From these 
gauge constraints it follows that certain terms are absent from the set of 
expressions making up the de Sitter curvature field, (15). But the choice of 
a particular gauge requires physical motivation and cannot be imposed 
strictly from the mathematics alone�9 In Section 4 I apply the mathematical 
formalism of the quantum analogue of Drechsler's soldered de Sitter fiber 
bundle to the physical model of the QRR, which will require a set of strong 
constraints imposed on the (quantized) S0(4, 1) connection, resulting in a 
major simplification of the (quantized) curvature expression given by (15). 

I conclude this section by noting that the S0(4, 1) curvature fields 
R ~ ( x )  are not independent, but satisfy the kinematic constraint (Bianchi 

identities) 

D~,~Ro=(x) + D,~ , (x )  + D~,~,(x) = 0 (16) 

which is a direct consequence of the Jacobi identity for the horizontal lift: 

[D.,[Do, D,~]]+[Do,[Do.,D~]]+[D~,[D~,Do]]=O (17) 

3. SOLDERING AND GAUGE TRANSLATIONS 

In the previous section I reviewed Drechsler's de Sitter fiber bundle 
TR(M4) constructed over Minkowski space-time and possessing as fiber 
the noncompact coset space V'4 = S0(4, 1)/S0(3, 1) on which an S0(4, 1) 
acts as the (internal) symmetry group of motion. The S0(4, 1) connection 
was found to decompose according to 

r (x) = r (x) + r ; (x )  (18) 

where 

~F~(x)J~ (19a) 
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r ; . (x)  = 4, F~(x)J4~ (19b) 

The four-vector gauge potentials 4~ F~(x) are connected with the group of 
vertical translations along the de Sitter fibers, but may be associated with 
"real" translations as carried out in Minkowski space-time through the 
additional concept of the "soldering" mechanism. 

It has been shown that the Lie algebra ~g of G = S0(4, 1) decomposes 
as ~ -- ~ O  J', where ~ is the Lie algebra of the S0(3, 1)j,j stability subgroup 
of S0(4, 1)j,j~, and $- is the four-dimensional vector subspace of ~ corre- 
sponding to (vertical) translations. L e t  FR(x )  be an S0(4, 1)-valued connec- 
tion form of a connection i n  P= P(M4, S0(4, 1)) which, according to 
equation (10), decomposes into l- and t-valued components: 

r (x) = r ' ( x )  + r ' ( x )  (20) 

For some chosen gauge (cross section) in P there exists a subbundle 
P' = P'(M4 S0(3, 1)) of P in which the fibers are determined by the residual 
gauge group S0(3, 1). 7 On the subbundle P', Ft(x) plays the role of the 
/-valued connection form, while Ft(x) is an R4-valued 1-form which may 
be identified as the soldered canonical form 0(X~), 8 where X,, is a tangent 
vector at some u(x)6 F (Trautman, 1970; Smrz, 1977; Drechsler, 1977b). 9 
That is, the principal fiber bundle P is mapped onto a subbundle P' in such 

r (x) a way that the six SO(3, 1)j,j gauge potentials define a connection 
(/-valued) on P', while the four gauge potentials 4i r~  (x) provide the "solder- 
ing" that makes P'  the bundle of linear frames (i.e., the bundle of all bases 
of tangent vector spaces) of M4 and thereby identifies points in the fiber 
bundle with the local frames of M4. Thereby a dynamical significance has 
been attached to the internal coordinates ~, since making a change in the 
external (base manifold) position x forces, via the soldering mechanism, a 
corresponding transformation of ~ along the locally "attached" fiber Fx 
over x ~ M4.1~ Compare this formulation with the conventional non-Abelian 
gauge field theories (Yang and Mills, 1954), which are described by general 
fiber bundles that are "loosely" connected (unsoldered) to the base mani- 
fold, where only the direction of the axis of the local internal space has 
any particular significance. 

7The principal fiber bundle P '  is a subspace of P obtained by restricting the homeomorphisms  
F~F~ (where Fx is the local fiber over x c B )  of P in such a way that ~ F  is always 
mapped into the point of  contact of  fiber and base space at x e B (Drechsler, 1977b). 

8This identification holds since the R4-valued 1-form r t ( x )  has the same transformation 
properties as the canonical form, which follows as a consequence of the fact that in S0(4, 1) 
the adjoint map  adg', g'~ S0(3, 1), acts on the vector subspace ~r as the four-dimensional  
real representation of S0(3, 1). See Smrz (1977) and Drechsler (1977b). 

9If X x is the projection of X~, at x~B, then the canonical form O(Xu.)~R 4 gives the 
components  of  X x with respect to the linear frame u(x) at x (Smrz, 1977). 

1~ point ~:~ V~ can be obtained from ~ by way of the de Sitter boosts. 
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The identification of the R4-valued 1-form F'(x) as the soldered canoni- 
cal form O(X.) implies that the corresponding gauge potentials Fa~(x) must 
be interpreted as proportional to the components of 0 (X.)  (i.e., proportional 
to the space-time tetrads hi(x) (Smrz, 1977). I therefore write 

4 i  i r (x) (21) = gh.(x) 

where g is a fundamental constant of proportionality with the dimension 
of inverse length. The covariant components of the Minkowski metric tensor 
are given by 

h~(x)h~(x)"qij g~..(x)= ' J (22) 

Using the dimensionless analogue of the S0(4, 1)j,j~ generator of 
translations (de Sitter boost's), where 

~'~ =- J4~, i = 0, 1, 2, 3 (23) 

one has that the t-valued connection may be written as 

rL(x)= gh,~(x)~ (24) 

Furthermore, since the base space of the bundle Te(M4) has been chosen 
to be locally free from gravitational perturbations (i.e., Minkowskian flat), 
one has that hi(x  ) = 6~ and 

rL(x)  = g G  (25) 

This result shows that the translational gauge is automatically fixed as a 
consequence of the identification of r~(x)  with the canonical form, which 
directly leads to the determination of the gauge potentials 4i F . ( x )  given by 
(21). Therefore, we have no freedom in choosing a particular cross section 

t in F . (x )  and translations should not be considered as true gauge degrees 
Of freedom. 

Another important consequence of the soldering mechanism is that 
the S0(3, 1)j 0 stability subgroup of the structural group $0(4, 1)j,j~, 
may be identified with the physical Lorentz subgroup S0(3, 1)j.~ of the 
Poincar6 group ~J.vp. (Bohm. 1979). Therefore the /-valued connection 
given by equation (19a) may be expressed as 

(26) 
Using this result along with (25) gives for the S0(4, 1) connection 

R - -  1 po- A F.  (x) - 5F. (x)Jpr + gcr. (27) 

Oo" where the Lorentz (/-valued) connection coefficients F~ (x) are classical 
fields and are functions of the coordinates x.. The Jpr and ~-. generate a 
representation of the structural group G = S0(4, 1)j..s., where J.~ generate 
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total angular momentum and fulfill the commutation relations of the Lorentz 
group: 

[J~.~, Jp,.] = -i(&.fl,,,. + g,,o-Jm, - &*,.J,,p - g,.fl.o-) (28a) 

and ~',, satisfy 

[J~,~, ~'o1 = i(g~p~r~ - &wCr~) (28b) 

[G ,  ,L] = G~ (28c) 

Although no freedom for the possible choices of the translational gauge 
exists [F~(x) is formally fixed according to equation (25)], the Lorentz 
gauge is still completely unspecified and a particular gauge choice may be 

po- 
m a d e  by determining the /-valued connection coefficients F .  (x). In the 

po- following section, a specific choice for the quantum analogues of F~, (x) 
will be made which leads to the physically acceptable model of the QRR. 

4. QUANTIZED DE SITTER CONNECTION AND AN EXAMPLE: 
THE QRR-GAUGE CHOICE 

Thus far I have discussed the de Sitter structural group S 0 ( 4 ,  1 ) j ~  
and the Poincar4 group ~ , ~  as they pertain to the geometrical formulation 
of hadron extension. A quantum physical system (hadron) is not described 
in terms of purely geometrical quantities, but, according to the fundamental 
postulates of quantum mechanics, by an algebra of operators that act in 
the space of physical states. According to this interpretation, an elementary 
particle has as its mathematical image an irreducible representation space 
of the Poincar4 group (Wigner, 1939). Therefore, to arrive at a plausible 
description of a quantum physical system, all previously discussed 
geometrical quantities should be represented by their Hermitian counter- 
parts and accordingly the generators Jp~ and ~-~ of the non-Abelian structure 
group S 0 ( 4 ,  1 ) j ~  will be understood as Hermitian operators in a unitary 
representation. Furthermore, in order not only to apply the de Sitter connec- 
tion to functions of x, but to generalize its applicability such that it acts on 
vectors of the space of physical states requires the replacement of the 

po- classical Lorentz connection coefficients F~, (x) with their quantum 
mechanical analogues, thereby treating them as general quantum operators. 
Therefore equation (27) is replaced with the following operator expression: 

(r (x))Op 1 1 po- o p  ~" (29) =~(~{(r~ (x)) , Jpo-})+g~ 

where {A, B} = A B  + B A .  
A physically interesting formulation is obtained by making the follow- 

ing Lorentz-valued gauge (cross-section) choice (Bohm, 1979): 
po- o p  p o- (r, ,  (x)) = g~P (30) 
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where/3 = Pt~M-l(=M-1pu~) and P,.P" = M 2, where g is the strong-interac- 
tion coupling constant with dimension of inverse length. With this particular 
gauge choice, the S0(4~ 1)j~.~ connection becomes 

(V~(x)) ~ = g(�88 P~}+ ~ )  (31) 

I now make the transition to the physically relevant model of the QRR, 
whose central feature is motivated by introducing the postulated center 
operator of Finkelstein (1949): 

b~ = ~M {J~'/3~} (32a) 

or, in dimensionless form where /~. = Mb~. (= b~.M), 

b~ = �89 fi~} (32b) 

which specifies b. in terms of the generators of a unitary representation of 
the Poincar6 group ~j . .p .  

Using the well-known commutation relations of the Poincar6 group 
[see (41) below], it is found that J~.~ and/~, generate a Hermitian representa- 
tion of the Lie algebra of an S0(4 ,  1)j.~g., where 

[J,.~,, Jo,~] = -i(g~,oJ,.o + g,,oJ~.o - g.oJ~,o - g~,pJ~,,~) (33a) 

[J.~, bp] = i(g~og~. - g.og~) (33b) 

lb . ,  b,,] = iJ.~ (33c) 

With this result along with the fact that b. =/~.M -~ (= M-'/~,.) is the QRR's 
(time-independent) origin operator (Aldinger, 1985) (which specifies the 
placement of the origin where the QRR's center of mass Y. = b~. +/3~.r), 
one is justified in making the following identification of the S0(4 ,  1)A.~" 
dimensionless operator of translations: 

~'. -->/~. (34) 

Therefore the S0(4 ,  1) j..g -valued connection operator in the "QRR-gauge" 
takes on the form 

(FR(x)) ~ = g((r~(x))~ (r~,(x) ~ (35a) 

= g(�89 +/~.) (35b) 
3 ^ = ~gb~ (35c) 

where the explicit form of the Finkelstein center operator given in equation 
(32b) has made it possible to combine the l- and t-valued connection 
operators into one "generalized" S0(4 ,  1)j..a -valued connection operator 
(35c). The S0(4 ,  1)j.~t;. gauge coupling constant g characterizes the relative 
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strength of the (strong) interaction between the hadronic matter fields and 
the gauge potentials. Here I am concerned with the extension of isolated 
(noninteracting) hadrons and therefore assume that the connection 
operators b~(x) extend their influence to the "boundary" of the micro-de 
Sitter sphere (hadronic bag), which is determined by the intrinsic radius of 
the internal space. A direct relationship is therefore expected between the 
strong coupling constant g and the radius R of the micro-de Sitter space 
(which, as discussed in Section 5, has the empirical value of R = 1 Fermi). 

In classical gauge field theory the gauge is fixed by imposing some 
constraint on the gauge potentials Aa~(x), which is then used to eliminate 
any unphysical degrees of freedom. Common gauge conditions are the 
Coulomb gauge, where V. Aa(x)=0, and the Lorentz gauge, where 
a~A~(x) = 0. For the quantum mechanical S0(4,  1)j.,a~-valued connection 
in the "QRR-gauge" we have the following operator identity, which is a 
consequence of equation (32) (Aldinger, 1985; Staunton, 1976): 

{/~, P~} = 0 (36a) 

where 

P. b = ~ i M = - b .  P (36b) 

This identity follows from the specific form of Finkelstein's center operator 
and reduces, classcially, to the Lorentz gauge constraint. Note also that as 
a direct consequence of the form of e~uation (32) we have for the flame 
at rest (proper Lorentz flame) where P~, = (1, 0, 0, 0) 

/~o = 0 (in the rest frame) (37) 

displaying the fact that the $0(4,  1)j~.a~ generators of de Sitter boosts are 
space like four-vectors. 

One can now express the full quantum mechanical analogue of the 
SO(4, 1)j~.~ horizontal lift [equation (13)] in the "QRR-gauge": 

= P~ +~gb~ + gb~ (38) B/~  1 ^ ^ 

where use has been made of the position representation of quantum 
mechanics, where the momenta P. = (1/i)O. and the generalized momenta 
B.  = (1/i)D~. 

The resulting curvature of the S0(4,  1)~.~ -valued connection in the 
"QRR-gauge" is obtained by evaluating the full quantum mechanical 
analogue of equation (14) [where the classical gauge potentials FR(x) are 
replaced with their operator equivalents (F~(x))~ Therefore, using 
equation (35b), one obtains [where the prime signifies the quantum 
mechanical analogues of the corresponding quantities in equations (14) and 
(15) of the previous section] 

[Bg, B~] - ,R - -  tl It -- g ~ . ~  -- g Q . ~ +  g S . ~  (39) 
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where 
t l  - -  t l  ^ A Q ~  = R ~ +  g[b.,  b~] (40a) 

R,I - 1 A 1 A 1 ,,~ 1 , ~  P~] + g[sb., 5b~] ~ = [P. ,  ~b~] + [~b~, (40b) 

" - [ P . , f ) ~ l + [ b ~ , P ~ l + g [ � 8 9  ~ 1" b~]+g[b.,~b~] (40c) 

commutation relations of the Poincar6 group Nj .~ . ,  where Using the 
P~ = p . M  -1 (=M-1p~): 

[J.~, J.~] = -i(g.oJ~,~+g~oJ.p -g~oJ~p -g~oJ~,~) (41a) 
A A 

[ Jo,~, P.] = i(g~,~Po- g.pP~) (41b) 

[ / 3 , / 3 ]  = 0 (41c) 

and the dimensionless form of Finkelstein's center operator given by 
equation (32b), one has that 

[b~, P~] = - i ( g ~  - P ~ ) M  (42) 

.Using this result gives the following simplifications of (40a)-(40c): 
l A A 

Q ~  =- R ~  + g[b,., by] (43a) 

R,l _1 r r  /~] (43b) ~ = ~ g L o ~ ,  
t A A 

, _1 b.]+�89 (43c) S.~ = ~g[b~, 

Finally, applying the commutation relations of the Hermitian representation 
of S0(4,  t)j.~g, given in equation (33c) yields 

[B. ,  B~] = i 9 2. zg J . .  (44) 

where J.~ has the quantum mechanical interpretation of generating physical 
angular momentum and is composed entirely of gauge potential "self- 
interaction" terms given in (43a)-(43c). Therefore we see that for the de 
Sitter connection in the "QRR-gauge," the generators of physical angular 
momentum take on a geometrical significance in that they represent the 
curvature field of the S0(4,  1)j.~a -valued connection as demonstrated by 
equation (44). 

The S0(4,  l)j.~a~ strong coupling constant g determines the range of 
the "self-interaction" terms of (43a)-(43c) and should therefore be related 
with the radius of the micro-de Sitter space, which is assumed to serve as 
the "confinement distance." The connection of g with the de Sitter space 
radius may be obtained by considering the following dimensional argument. 
We have seen that the translational components Fa~(x) characterize a local 
change of the observable Lorentz coordinates when a shift of position is 
made in the/z direction and therefore should be interpreted as proportional 
to the tetrads of space-time: 

F4i(x) = gh~(x) (45) 
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where g is a constant with the dimension of  inverse length. The generators 
of  the de Sitter rotations J4~ and the corresponding generators of  translation 
7r~ are related by 

1 
zrl =---~ J4~ (46) 

where R is the radius of  the micro-de Sitter space. Therefore 
4 i  i = h.(x)~r, F.(x)J4~ (47) 

and we see that dimensionally g may be identified with the inverse de Sitter 
radius, i.e., 

g = 1 /R  (48) 

up to a multiplication constant. 
We now make the following ansatz in the "QRR-gauge":  

g = -~A (49) 

where h = 1 /R  is the inverse radius of  a micro-de Sitter space and character- 
izes the curvature of  the fiber which, as a consequence of the Cartan nature 
of  the bundle (i.e., the soldering mechanism), may be measured in terms 
of centimeters. The constant, -~, has been introduced so that the 
S0(4 ,  1 ) ~ ,  horizontal lift (covariant derivative) becomes 11 (Bohm, 1966, 

1968) 

= - (50) 

where 

which agrees with the form of the generalized "dynamical  momenta"  
operator used in Aldinger et al. (1983) to construct the model of  the QRR. 
Using equation (49), one obtains for the commutat ion relation (44) 

[B, ,  By] =/h2J.~ (52a) 

which, along with the relations 

[Jo~, B.]  = i(g.~B o - g.oB~) (52b) 

[ J ~ ,  Jo,~] = -i(g~oJ~+gvoJ.o -g~oJ~o -g~oJ.~) (52c) 

shows that the B.  and J.~ generate another representation of S0(4 ,  1 ) j ~ . ,  
which turns out to play the central role in the development of  the QRR, as 
explained in the following section. 

tlThis operator was first introduced in its present context in Bohm (1966). Similar formulas 
have appeared in the literature, but where B. had an entirely different meaning of a center 
position, and when it was realized that they are related to an S0(4, 1), the de Sitter space 
was chosen to have the radius of the universe. 
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Also note that the "dynamical momenta" B~, satisfy the quantum 
analogue of the kinematic constraint given by (17). 

5. THE Q R R  A N D  T H E  INFINITE-CURVATURE LIMIT OF T H E  
D E  SITTER FIBER 

The central role that the S0(4 ,  1)j~b~ representation given by (52) 
plays for the model of the QRR is that in the same way that the quantum 
relativistic mass point (elementary point particle) is characterized by the 
eigenvalues rn 2 of the second-order Casimir operator P~.P~ of the Poincar6 
group, the QRR is characterized by the eigenvalues A2c~ 2 of the SO(4, 1)j.~B~ 
second-order Casimir operator: 

A2 Q = B .  B~ _Z~2 J,.,.J"~ i r r e p  /~202 (53) 

where the "dynamical momenta" B~. supply a coupling between the external 
translational motions and the associated internal motions (which take place 
along the de Sitter fibers) and has the form 

A 
B~ = P~ - Ab~ (54a) 

= P~ - 2  {J~o, 13o} (54b) 

Substituting (54b) into (53) yields the following alternate form of the 
S0(4 ,  1)~.B~ second-order Casimir operator: 

9 2 2 A i r r e p  , ~ 2 0 , 2  X2Q=P,~P"+~-A w = (55)  

- -  1 D v T p ~  where l;d= ( P~.P~*)-I w with W =- -w~.w ~, w,. -- 2c..tzvprrat . , ,  . 

The QRR Hamiltonian is obtained by replacing the constraint for a 
quantum relativistic mass point 

ap _ p~p~ - m 2 ~ 0 (56) 

with the QRR constraint relation 

q)~ P .P"  + 9~2- A: VV- hzaz = 0 (57) 

The ~0 signifies "set weakly equal to zero," since the constraint has 
nonvanishing commutators and one must evaluate all commutation relations 
prior to imposing the constraint. Following the rules of constrained Hamil- 
tonian mechanics (Dirac, 1950), one obtains the following for the QRR 
Hamiltonian: 

Y( = r  =- r  PuP~" + 9A 2-  2~2 l]V - h aa z) (58) 

where r is a velocity parameter determined to be r = - 1 / 2 M  in the timelike 
center-of-mass gauge (Aldinger, 1985). 
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The constraint relation (57) taken between the canonical basis vectors 
Ipss3) [which form a basis of the space of physical states (Bohm et al., 
1983)] leads to the (rotator-like) mass-spin trajectory relation: 

m 2 = h 2 ( 2 _ 9 ) + h 2 s ( s + l )  (59) 

where, for the special case of the Majorana representation, each spin occurs 
1 3 5  exactly once and has either the spectrum s = ~, ~, ~ , . . .  or s = 0, 1, 2 , . . .  and 

occurs with alternating parity. The QRR is composed of distinct physical 
systems (individual rotators) each of which is characterized by a particular 
value of h2a 2 [the eigenvalue of the S0(4,  1) invariant operator A2Q], 
where a is a continuous parameter, which, for the principal series rep- 
resentation of 80(4 ,  1), can take on values such that a2>~9-s(s+ 1). In 
this way each hadron is considered to be a different level of a particular 
rotator of  the QRR, where a single rotator (characterized by a specific value 
of a)  consists of a tower of spin levels (where each level is a different state, 
i.e., hadron, of the physical system) with corresponding masses given by (59). 

An empirical value for ;t 2 (where R = 1/h is the radius of the de Sitter 
space and whose value is the same for all rotator towers) may be determined 
from the fits of the p-, w-, or K-meson towers (for example) and is found 
to be h2=0.3 (GeV) 2, which leads to a micro-de Sitter space radius of 
R ~�89215 10 -13 cm (Aldinger et al., 1984). 

The QRR is considered to be a one-dimensionally extended object 
(where the extension is characterized by the radius of the de Sitter space) 
capable of performing translations and rotations in Minkowski space. As 
a consequence of the form of the 80(4,  1)j~B~ "dynamical momenta" given 
in (54), we see that the Poincar6 group ~j~.p~ and the de Sitter S0(4,  1)j~.~, 
are related by an In6nfi-Wigner (1953) contraction process [carried out 
with respect to the Lorentz stability subgroup S0(3,  1)j,~] in the infinite 
(de Sitter space)-radius limit, where 1/R  = h --> 0, i.e., when the (compensat- 
ing gauge operators b~,(x) are "turned off." In this limiting process (when 
the internal structure of  the model is ignored), the "dynamical momenta" are 

and 

- h b u  - - - *  Pu B~,= P, ~ A~o (60) 

[B~, B~] = iA2j~ x-~0 [p~,, p~] = 0 (61) 

[J~,  Bo] = i(g~pB~. - g~pB~) x~o [ j ~ ,  pp] = i(g~op~" _ g~op~ ) (62) 

while the commutation relation of [J.~, Jo~], equation (52c), remains unal- 
tered and therefore the de Sitter S0(4,  1)j~.B. contracts into the Poincar6 
group ~j~.~,. 
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In order to obtain a faithful representation in the A--> 0 contraction 
limit, one must allow the continuous parameter c~--> ~ in such a way that 
A 2a2"--> m 2, where m2~ > 0. Therefore the SO(4, 1)j..B. second-order Casimir 
operator reduces according to 

9 2 2 "~ irrep /~2OL2 A o 0  irrep 
P~P"+zA - A  W = P.P~ = m 2 (63) 

(where the square of the momentum decouples from the spin) and, accord- 
ingly, the QRR Hamiltonian, equation (58), reduces in this limit to the 
Hamiltonian of the quantum relativistic (structureless) mass point (Aldinger 
et al., 1984). One can conclude that in the infinite-curvature limit of the de 

A 
Sitter fiber, the gauge operators b~(x) are "turned off" by taking A->0, 
leading to the well-known dynamics of the quantum relativistic mass point 
(elementary particle) described by the irreducible representations of the 
Poincar6 group. 

One may physically characterize the additional degrees of freedom 
associated with the hadron's internal space (de Sitter fibers) by saying that 
the "dynamical momenta" B~ [which are related to the translational degrees 
of freedom contained in the vector subspace of S0(4 ,  1)j.~a. spanned by 
the gauge operators /~.(x)] are members of a set of generators of the 
ten-parameter de Sitter group SO (4, 1)j~n~, which allow generalized transla- 
tional gauge degrees of freedom, which in the infinite de Sitter limit R --> co 
(or, equivalently, A ~ 0) correspond to the Abelian generators of translations 
P. .  However, due to the smallness of the de Sitter space radius [which is 
taken to be the confinement distance that constrains the action of the 
short-range self-interaction gauge operators /~.(x)], the additional transla- 
tional degrees of freedom associated with the S0(4 ,  1 ) j . ~  B~'s should not 
be considered as being physically detectable. 
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